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ABSTRACT

This dissertation focuses on the relationship between human activities and water re-

sources in the United States. The first chapter studies how the Conservation Reserve

Program (CRP), a national land conservation program, affects nutrient concentrations in

groundwater. The second chapter utilizes a comprehensive and unique historical dataset

on drinking water facilities and studies how water supply sources affect communities’ re-

silience during droughts. The third chapter studies the effectiveness of a series of incomplete

phosphorus lawn fertilizer bans in Florida.
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1. GENERAL INTRODUCTION

The complicated relationship between human activities and water quality/quantity has

interested many researchers. My primary research interest lies in environmental economics

and water resource policy. This dissertation studies water quality and water quantity in the

United States, especially groundwater. In particular, the first chapter, The Conservation

Reserve Program and Nutrient Pollution in Groundwater, studies how the Conservation

Reserve Program (CRP) affects groundwater quality in the United States. CRP is a land

conservation program administrated by the Farm Service Agency. It was first implemented

in 1986 and one of its many goals to address environmental concerns is to improve water

quality. I am particularly interested in the CRPs impact on nutrient concentration in

groundwater because: first, groundwater quality is essential. Groundwater provides 25 to

40 of the worlds drinking water, provides over 30% of the United States drinking water and

around 15 million rural households in the United States rely on private wells for drinking

water. Second, nutrients in groundwater, especially nitrate, has been proven to be harmful

to human health. Excess nitrate in drinking water is fatal to infants. The source of nutrients

in groundwater mostly comes from agricultural activities. Third, previous studies on CRPs

impact on water quality focus on surface water, and I find very few studies specifically

focus on groundwater quality. I use fixed effects model and difference-in-differences method

in this research. Results from estimating the fixed effects model indicate that for a 1%

increase in CRP acres / (CRP + cropland acres) ratio in a county, nitrate concentration

in groundwater drop by 7.9%, and phosphorus concentration in groundwater drop by 27%.

With the difference-in-differences method, I am able to test the robustness of my previous

results, and I show that there is a significant difference in nutrient concentration level in
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groundwater between counties with CRP enrollment and counties without. My finding is

markedly different from existing literature because its focuses on groundwater quality, its

application of fixed effects model and its robustness in results. The second chapter of my

dissertation, Reliable Drinking Water Supply and Cities Resilience to Drought (joint with

Dr. David Keiser, Dr. Gabriel Lade, and Dr. Ivan Rudik), studies how differences in

drinking water supply sources affect how cities adapt to and respond to extreme weather

events. We compiled a unique historical panel dataset of drinking water treatment facilities

across the U.S. for this research. Our findings suggest that a groundwater source for drinking

water prevents migration during severe droughts. This finding shows that it is crucial

for city planners to consider a variety of water supply sources and invest in groundwater

supply source, and this conclusion is especially meaningful to developing countries that

are still building or expanding modern drinking water infrastructure. The third chapter

of my dissertation, The Effectiveness of Phosphorus Lawn Fertilizer Bans (joint with Dr.

David Keiser), studies the effectiveness of incomplete phosphorus lawn fertilizer bans in

Florida by utilizing a restricted consumer scanner data and fixed effects model. We find

this series of bans on phosphorus fertilizer application results in a 21.7% drop in fertilizer

purchase in ban counties. We also find there is a spillover effect on fertilizer sales in ban

counties during before-ban seasons, and we show there is no consistent evidence that the

bans result in spatial spillover to non-ban, border counties. Our study contributes to the

literature by studying a ban that restricts fertilizer use but not fertilizer sale, and we explore

the effectiveness of this ban by looking into changes in consumer behavior. We also take

advantage of the spatial and temporal variation of a series of bans, compared to previous

studies on similar household phosphorus restrictions which mostly focus on a single ban.
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2. THE CONSERVATION RESERVE PROGRAM AND NUTRIENT
POLLUTION IN GROUNDWATER

This paper examines how the Conservation Reserve Program (CRP) affects nutrient

concentrations in groundwater. Using a fixed effects model on data from the National

Resources Inventory (NRI) and the United States Geological Survey (USGS), I find evidence

that CRP enrollment reduces nitrate and phosphorus concentrations in groundwater. A 1%

increase in the five-year moving average of CRP/(CRP+cropland) ratio leads to a 7.9%

reduction in nitrate concentration and a 27% reduction in phosphorus concentration in

groundwater. However, the finding is sensitive to model specification. I also find evidence

of substantial heterogeneity in the program’s impact both over time and across space.

2.1 Introduction

Nutrient pollution from agriculture is identified as a leading cause of water quality im-

pairment worldwide. Nutrient runoff increases surface water pollution that contributes to

algal blooms and death of aquatic life. Nutrient leaching to groundwater, though mostly

invisible, is no less dangerous. Over 38% of the United States population depends on ground-

water for drinking water, over 98% of self-supplied domestic water comes from groundwater

[NGWA, 2016, USGS, 2010]. Of the two common nutrient contaminants in groundwa-

ter, nitrogen and phosphorus, high nitrogen concentration in drinking water is particularly

harmful, as it can be fatal to infants [Fan and Steinberg, 1996, Spalding and Exner, 1993].

Phosphorus is generally considered safe for human consumption, but phosphorus in ground-

water can leach to surface water and lead to surface water pollution. Crutch-field et al.
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(1997) estimates that on average a household would be willing to pay $45 to $60 per month

to reduce nitrate in drinking water to the EPA minimum safety standard.

There are many land use programs in the United States that aim at providing envi-

ronmental benefits. CRP alone costs around $1.7 billion each year and is one of the most

important conservation programs administrated by the U.S. Department of Agriculture. A

primary goal of the CRP is to improve water quality. Researchers have focused on studying

CRP enrollments’ impact on surface water quality, and have reached conflicting results. A

report from Farm Service Agency (FSA) shows CRP significantly reduces nutrient runoff;

nitrogen and phosphorus leaving CRP land are 95% and 86% less respectively compared to

cropped land [Farm Service Agency, 2012]. However, Sprague and Gronberg [2012] demon-

strated there exists a positive relation between CRP area and nutrient export to surface

water (both nitrogen and phosphorus), especially when soil erodibility is low or moderate.

Previous studies have found correlations between general agricultural land use and ni-

trate concentrations in groundwater in many countries [Böhlke, 2002, Strebel et al., 1989,

Kumazawa, 2002, Viers et al., 2012, Gardner and Vogel, 2005], but few studies focus on

how the CRP affects nutrient concentration in groundwater. The relation between CRP

acreage and groundwater quality can be more complicated than surface water, and this

area needs exploration. Compared to surface water, groundwater quality can be affected

by many factors that are difficult to measure. Nutrient concentrations in groundwater can

be affected by precipitation, soil quality, aquifer type, underground flow direction, depth

of water table, among other factors [Nolan, 2001, Viers et al., 2012, Dinnes et al., 2002].

Nitrates are highly leachable and can easily reach groundwater compared to other forms of

nitrogen such as ammonia. Wang et al. (2015) conduct a simulated rainfall experiment to

study nitrate leaching. They find that about 50% of nitrate-nitrogen from total fertilizer

applied to topsoil will stay in surface and bottom layers of the soil, and becomes a pollution

source for groundwater. Nitrate is also very stable and persistent in groundwater under

natural conditions [Bruggeman et al., 1995, Burow et al., 2007, Mastrocicco et al., 2011,
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Lerner and Harris, 2009]. The persistence of nitrate in groundwater and slow groundwater

recharge/renew rate also makes it difficult to evaluate the relationship between land use

and groundwater pollution.

Previous research on CRP and other land use programs has conducted cost-benefit anal-

yses of different conservation programs and environmental policies. The relation between

environmental benefits and land retirement costs is not straightforward and can depend

on the environmental targets, productivity of the land, and policy design [Claassen et al.,

2008]. Babcock et al. [1996] show that the targeting instrument of the CRP matters when

optimally allocating a given budget, and different environmental benefits can correlate with

CRP enrollment in different ways, even under the same policy. Most previous work studies

surface water quality as a targeting instrument. This paper will provide a better view for

future analyses that focus on groundwater benefits.

In this paper, I use data on CRP enrollment from National Resources Inventory (NRI)

and water pollution data from United States Geological Survey (USGS). I use a fixed ef-

fects model to identify the relationship between CRP enrollment and nutrient pollution.

The specification has advantages in its ability to control for unobserved factors that may

contribute to nutrient concentration in groundwater. I find that the ratio of CRP land over

the sum of CRP land and cropland (CRP/(CRP+cropland))1 is negatively correlated with

nitrate and phosphorus concentration in groundwater. In my preferred specification, a 1%

increase of CRP ratio leads to a 7.9% reduction of nitrate concentration and 27% reduction

of phosphorus concentration. However, the result is sensitive to the empirical specification.

I also find that after the initiation of the CRP, counties with CRP land have around 55%

less nitrate (dissolved) and 34% less nitrite (dissolved) in groundwater compared to counties

that did not have CRP land.

This paper shows enrolling cropland into the CRP may reduce nitrate, nitrite and

phosphate-phosphorus concentration in groundwater. I also show there is a lag between

1This ratio: (CRP/(CRP+cropland)), will be referred to as “CRP ratio” in the rest of this paper.
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CRP enrollment and changes in nutrient concentrations in groundwater.That is, after CRP

enrollment, changes in groundwater quality usually take years to become observable and

also can last a few years after the land is dropped from CRP. This lag effect suggests when

groundwater quality is a targeting instrument in program evaluation, the long-term effect

should be considered.

The paper proceeds as follows: section 2 introduces the design and program history of

the CRP, section 3 describes the datasets used in this paper, section 4 describes the empirical

model, section 5 discusses the regression results, section 6 presents further analysis using

the difference-in-differences method and the final section concludes.

2.2 The Conservation Reserve Program

The Conservation Reserve Program (CRP) was created in 1985 over concerns of high

levels of soil erosion in the United States. It is a cost-share, rental payment program ad-

ministered by the U.S. Department of Agriculture (USDA) Farm Service Agency (FSA).

The primary goal of the CRP is to conserve and improve the natural environment, includ-

ing soil, water quality, and wildlife habitat. The CRP is voluntary and requires farmers

and landowners to sign 10 to 15-year contracts. To enroll land in CRP, farmers need to

convert highly erodible or previous cropped land into conservation buffers2 and long-term

covers, such as grasslands, wildlife shelter planting3, and riparian buffers4. Cropland needs

to be planted to an agricultural commodity at least four of the previous six crop years. It

also needs to be physically and legally capable of being planted in a normal manner to an

agricultural commodity. Eligible land is either bid into the program and ranked using the

2Conservation buffers are small areas or strips of land in permanent vegetation, designed to intercept
pollutant and manage other environmental concerns, including air, water, soil pollution. Conservation buffers
include riparian buffers, filter strips, grassed waterways, shelterbelts, windbreaks, living snow fences, contour
grass strips, cross-wind trap strips, shallow water areas for wildlife, field borders, alley cropping, herbaceous
wind barriers, and vegetative barriers (NRCS).

3For example, Wildlife Food Plots that plant grains, such as rye, millet and buckwheat to provide food
source and cover for many wildlife species, especially in extreme weather.

4Riparian buffer is a kind of conservation buffers, it traps sediment, nutrients and pollutants, recharges
groundwater and provides better habitat for fish and other wildlife.
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Environmental Benefits Index5 (EBI) in general sign-ups, or is enrolled automatically (no

bidding or ranking) via Continuous Conservation Reserve Program6 (CCRP) if it meets

certain eligibility criteria (NSAC, 2016). Thus, substantial selection bias exists when com-

paring outcomes of CRP and non-CRP land.

USDA was authorized to enroll up to 45 million acres of CRP land in 1985, and then

the enrollment cap dropped to 24 million acres from 1985 to 2017. The enrollment cap

has to do with commodity price. When crop prices are high, farmers have less incentive to

retire their land. Figure 2.1 shows that less enrollment and tighter enrollment cap followed

an increase in crop price in the early 90s. After crop price decreased in the late 90s, CRP

enrollment increased, and the enrollment cap was raised. CRP is a costly program. Annual

funding for CRP was about $1.7 billion in most years after 1991, which takes up a major-

ity of major USDA conservation program spendings (USDA, 2016). Total nominal rental

payments accumulate to almost $48 billion from 1987 to 2017. Average rental payment was

$42.99/acre in 1986 and gradually increased to $72.61/acre by 2016. Figure 2.2 shows how

CRP rental payment changed from 1985 to 2016.

Former research has reached conflicting conclusions on whether the CRP improves sur-

face water quality, and I expect no less complication when it comes to groundwater. CRP

may influence nutrient concentrations in groundwater through several mechanisms. By con-

verting highly erodible land into buffers and pulling land out of agricultural production, the

CRP reduces fertilizer use and nutrient runoff. Constructed and restored wetland can en-

hance the denitrification process, turning harmful nitrate to benign nitrogen gas (N2), thus

reducing nitrate concentrations in the field. On the other hand, grass filter strips and ri-

parian buffers are installed to intercept nutrients before they enter surface water, increasing

5Current EBI factors include wildlife habitat benefits, water quality benefits, on-farm soil-retention ben-
efits, benefits that will likely endure beyond the contract period, air quality benefits and cost

6For CCRP the land must be recognized as “marginal pastureland” that is bordered to a stream, creek,
river, sink-hole, and/or duck nest. CCRP eligible practices include riparian buffers, wildlife habitat buffers,
wetland buffers, filter strips, wetland restoration, grass waterways, shelterbelts, windbreaks, living snow
fences, contour grass strips, salt-tolerant vegetation, and shallow water areas for wildlife.
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Figure 2.1: CRP enrollment cap, cumulative enrollment and crop prices
Notes: This figure shows cumulative CRP enrollment by fiscal year and
CRP enrollment cap in million acres. It also plots the market year average
price (MYA) of major field crops: wheat, corn, and soybean. MYA price is
a weighted average of the monthly prices for the marketing year. It is used
to calculate the current year actual crop revenue and determines farm bill
programs payments.

the amount of nutrients left in the field and potentially increases the amount of nutrients

that leach into groundwater.

2.3 Data

Two major datasets are used in this paper: land use data from the National Resources

Inventory (NRI) and water quality data from the U.S. Geological Survey (USGS).

2.3.1 Land use data

Land use data from the NRI provides county-level acreage of 12 categories of land use,

including cultivated cropland, noncultivated cropland, rangeland, pasture land, urban, rural

transportation, small water area, large water area, forest, federal land, minor land and CRP
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Notes: This figure shows the average rental payment of CRP land started
at $42.99/acre in 1986. It fell below $46/acre around 1998 and then steadily
increased to $72.61/acre in 2016.

Figure 2.2: Average rental rate of CRP land

land. The dataset covers 1982, 1987, 1992, 1997, and every year from 2000 to 2010. I use

linear interpolation to fill in the missing years from 1982 to 2000 for all categories except

minor land and large water area. This is because large water area does not vary by year,

and acreage of minor land in gap years is generated by subtracting all other categories from

total acreage so that total acreage remains the same across years. I also run regressions

using land use data without linear interpolation. I get similar results with or without linear

interpolation, and the latter results are presented in Appendix7.

Figure 2.3 provides a snapshot of CRP land by county in 1990, 2000 and 2010. This

figure illustrates that the Midwest region, Montana, Washington, the adjacent area of Col-

orado, Kansas, Oklahoma and Texas are heavily enrolled in CRP, while counties along the

7See Table A.5 for regression results using original data with no interpolation.
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Mississippi River have relatively less CRP enrollment over time. It also shows the density

distribution of CRP enrollment does not vary much over time. Figure 2.4 presents a line

plot of yearly CRP ratio8 for eight counties from 1982 to 2010. This plot provides an ex-

ample of the variation in CRP enrollment over both time and space. It also illustrates a

common upward trend in enrollment over the first ten years of the program.

2.3.2 Water quality data

Groundwater quality data comes from the USGS. This dataset covers 1982 to 2010, and

provides 19 categories of nutrient concentrations (Table 2.1). Different nutrient categories

are collected at different months in different monitoring stations. There are nearly 900,000

observations from 75,252 distinct monitoring stations in the U.S. (Figure 2.5). For the

ease of calculation and comparison, I converted all concentration values to nitrogen and

phosphorus content. For example, “Nitrate, dissolved” means the concentration of NO−
3 -N

dissolved in the sample, not the concentration of NO−
3

9.

Of the 19 categories of nutrient categories in water quality dataset, I focus on nitrate

concentration because it is a major health concern and is very persistent in groundwater.

Phosphorus is a critical concern in surface water pollution, but its existence in groundwater

only becomes a concern when it gets into surface water through the water cycle. In the

water quality dataset, about 40% of records10 are marked with “Not detected” or “Present

Below Quantification Limit”. I replace all these records with one-half of the corresponding

“Historically lower limit reported” value. These non-reported records represent a large

fraction of the data, so I explore the sensitivity of my results using censored data11. Less

than 0.001% is marked as “Present Above Quantification Limit”, and is replaced with

“Historically upper limit reported” value. Nutrient concentration appears to be extremely

8 CRP ratio =
acres of CRP land

acres of CRP land and cropland
9Nitrogen-ion conversion: NH3 = NH3–N × 1.21589, NH+

4 = NH+
4 –N × 1.28786, NO−

2 = NO−
2 –N ×

3.28443, NO−
3 = NO−

3 –N × 4.42664. Phosphorus-ion conversion: PO3−
4 = PO3−

4 –P × 3.06619.
1024.67% of nitrate observations
11See basic statistics and regression results using original censored data in Figure A.1 and Table A.6.



www.manaraa.com

11

Notes: This figure shows the density and location of CRP land. It shows
that though there exists variation in the density of CRP land, most CRP
enrollment consistently comes from the same areas.

Figure 2.3: Snapshot of CRP land: 1990, 2000, and 2010
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Notes: This figure shows the CRP ratio varies spatially. These eight counties 
are selected using random number generator from the dataset.

Figure 2.4: Variation in CRP ratio in eight counties
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Table 2.1: Categories of nutrients in groundwater quality data

Form

Nutrient Frequency Dissolved Total

Ammonia and ammonium 134,796 X X
Inorganic nitrogen (nitrate and nitrite) 164,590 X X
Kjeldahl nitrogen 62,083 X X
Nitrate 128,277 X X
Nitrite 118,669 X X
Nitrogen 2,217 - X
Nitrogen, mixed forms 73,166 X X
Organic nitrogen 70,858 X X
Phosphate 115,390 X X
Phosphate-phosphorus 9,184 - X
Phosphorus 72,365 - X

Notes: This table shows all measurements used when water quality data was collected.
Some categories overlap but I keep them exactly as how they are categorized in the
original water quality dataset. For example, “Nitrogen, mixed forms” measures the
sum of NH3, NH4, organic nitrogen NO2 and NO3, which overlaps with several other
categories. “nitrogen” is a vague definition compared with other categories.

Notes: Black dots in this map are monitoring stations.

Figure 2.5: Map of monitoring stations and aquifers by rock type
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positively skewed in all categories. To limit the influence of outliers, I winsorise the readings

at the 99th percentile for all nutrients.

To better understand the readings of nutrient concentrations in this dataset, I compare

the data to Max Contaminant Level (MCL) set by EPA. EPA has established a drinking-

water standard of 10 milligrams per liter (mg/L) for nitrate-nitrogen and 1 mg/L for nitrite-

nitrogen [U.S. Environmental Protection Agency, 1995]. Nitrate concentrations in natural

ground waters are usually less than 2 mg/L [Mueller et al., 1995]. Phosphorus is generally

considered safe for human consumption, and U.S. EPA does not have an MCL for phos-

phorus in drinking water. Figure 2.6 present distribution of log of concentration values of

nitrate, nitrite, and phosphorus. It also provides comparisons of the limit and actual nutri-

ent concentrations. Figure 2.6 shows less than 10% observations have nitrate concentration

above MCL and less than 1% observations have nitrite level greater than MCL.

In the difference-in-differences analysis, I examine whether nutrient concentration in

counties that have enrolled in the CRP (treatment group) is different from counties with

zero CRP land (control group) in the years before and after the implementation of the CRP.

I also use lead (dissolved) and cadmium (dissolved) to perform a placebo test. The primary

source of lead in groundwater is dissolution of soil and earth crust, leaded gasoline, and

water distribution system. Cadmium in groundwater mainly comes from mining activity,

industrial waste, and combustion of fossil fuels. Since lead and cadmium in groundwater

mostly come from non-agricultural activities, the placebo test will tell whether differences

(if any) of nutrient concentrations between treatment group and control group are results

of the implementation of CRP. Lead and cadmium data also come from the USGS. I use

station-year level data for the difference-in-differences analysis instead of station-month

level because of the limitation of the number of observations for pollutants.

2.3.3 Other datasets

I include complete aquifer characteristic data by matching monitoring stations to the

U.S. aquifer map from USGS (Figure 2.5). This process allows me to include a rock-type
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(a) (b)

(c) (d)

(e)
Notes: This figure shows the distribution of nitrate N, nitrite N and phosphorus concentration from water
quality dataset using log of concentration readings. The MCL for nitrate-N is 10 mg/L, and 1 mg/L for
nitrite-N. The mean value and MCL value are noted with red vertical lines in each figure. The mean of each
distribution (in log value) is -0.62, -0.78, -5.24, -5, -3.92 respectively, and the percentage of observations
that exceeds MCL is 9.33%, 6.87%, 0.27%, and 0.22% respectively (There is no MCL for phosphorus in the
U.S.). The peaks below zero in figure (a), (b) and (e) are results from replacing “below quantification limit”
or“not detected” values with one-half of corresponding “ historically lower limit reported” values. Please see
Figure A.1 for distributions of nutrient concentrations with no replacement for “below quantification limit”
values.

Figure 2.6: Distribution of log of nutrient concentrations
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fixed effect in the model as an approximation of the easiness of percolation. Rock type is

not part of EBI, so it is exogenous to the decision of CRP enrollment. Rock types include

carbonate-rock aquifers, igneous and metamorphic-rock aquifers, sandstone and carbonate-

rock aquifers, sandstone aquifers, semiconsolidated sand aquifers, unconsolidated sand and

gravel aquifers for major aquifers, and the rest belongs to minor (confined) aquifers. It is

impractical to precisely sort the permeability of each aquifer by rock-type or by location.

In general, carbonate-rock aquifers, sandstone and carbonate rock aquifers, unconsolidated

sand and gravel aquifers have higher permeability and hydraulicly conductivity than the

other types. Minor aquifers are also called confining units, which generally have low per-

meability (many are only permeable when fractured) and unproductive by unit. Aquifers

with high permeability are more prone to contamination, and high hydraulic conductivity

means easier transportation of contaminants in groundwater.

2.4 Model

This paper employs a fixed effects model to estimate the impact of CRP enrollment on

nutrient concentrations in groundwater. I estimate the following model:

Nicym = f(ratiocy) + αc + αy + αm + αr + εicym, (2.1)

where Nicym stands for log of nutrient concentration value at station i, in county c, for

month m in year y; f(ratiocy) is a function of land use at county c in year y; αc is a county

fixed effect; αy and αm are year and month fixed effects respectively; and αr is a rock-type

fixed effect. The rich fixed effects control for a number of potential confounding factors

such as soil quality, underground flow direction and crop type. The ability to include rich

fixed effects is a key contribution of this work.

In this paper I use two specifications of f(ratiocy). The first is f(ratiocy) = βratiocy,

where ratiocy is a moving average of the CRP ratio (CRP/(CRP+cropland)). The second

specification is f(ratiocy) = γ1RCRPcy + γ2Rnoncropcy + γ3Rrangelandcy + γ4Rpasturelandcy +
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γ5Rurbancy , where R(l) is a moving average of the ratio of each land use l to acres of total

land (acres of land use l/acres of total land). The category “noncrop” contains acres in

forest, small water area, large water area, rural transportation, minor land and federal.

Thus, the reference category in the second specification is cropland.

I use long-term moving average of land use variables in f(ratiocy) because unlike surface

water, groundwater has a much slower recharge rate. McMahon et al. [2011] shows mean

groundwater residence time in different U.S. aquifers ranges extensively. Residence time

varies mostly with the depth of groundwater: deeper groundwater usually has longer resi-

dence time. Drinking water wells are generally shallow groundwater that typically ranges

from 10 to 60 feet deep. A regional research using Connecticut public well data shows the

mean residence time of groundwater in such shallow aquifers is around five years [Starn and

Brown, 2007]. The length of groundwater residence time provides a reference of how long

nutrients in groundwater stay underground. Lerner and Harris [2009] also find that nitrate

pollution in groundwater is a long-term problem, and contemporaneous changes in land use

do not substantively affect nitrate accumulation. CRP contracts last 10 to 15 years, which

means there is a long window for changes to occur to local soil quality, nutrient residue

level in soil, and nutrient leaching rate. Without better knowledge of the exact hydrology

profile of each monitoring station, I use different lengths of time when calculating the CRP

land moving average12, and my preferred order of moving average matches with findings in

Starn and Brown (2007).

The first specification of f(ratiocy) best describes the fact that most CRP land comes

from putting cropland out of production. Results from this specification intuitively explain

how retiring erodible land correlates with nutrient concentration in groundwater. However,

it does not offer a bigger picture of how CRP land affects groundwater quality compared

with other land use categories. The second specification of f(ratiocy) provides a comparison

12See results in Figure 2.7
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of the impact of different land use on nutrient concentrations in groundwater, using cropland

as a reference.

2.5 Empirical Result

I begin by selecting the preferred order of the moving average in f(ratiocy) with the

following equation:

Nicym = MAcy,n + αc + αy + αm + αr + εicym, n = 1, 2, ..., 10 (2.2)

where MAcy,n stands for the moving average of CRP ratio in the past n years at county

c in year y. Figure 2.7 plots how the regression results vary with different time range for

representative nutrients. Y-axis in the plot is the moving average of CRP ratio in the past

one to ten years. These plots show that the impact is smallest when only considering con-

temporaneous enrollment, and the impact increases as the moving average term increases. I

find the greatest impact of CRP ratio occurs when considering the five-year moving average.

This result is intuitive and is consistent with findings of shallow groundwater residence time

in Starn and Brown (2007).

Table 2.2 presents regression results estimating equation (1) using the five-year moving

average CRP ratio as the independent variable and total nitrate concentration as the de-

pendent variable. Year fixed effect captures the time trend, and month fixed effect captures

seasonality. County fixed effect captures time invariants unobservables such as soil quality,

and rock fixed effect absorbs unobservables on aquifer features. Column (1) presents re-

sults from OLS model where no fixed effect is used. It shows the CRP ratio is positively

correlated with total nitrate concentration in groundwater. Column (2) and (3) include

time and seasonality controls and show a counter-intuitive, positive and statistically sig-

nificant correlation between CRP and nitrate concentration. These results are consistent

with the results in Sprague and Gronberg [2012], who find a positive correlation between

CRP area and nutrient concentration in surface water using an OLS model. However, when

county fixed effects are included in the model, the coefficient on the CRP ratio becomes
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(a) Kjeldahl Nitrogen (b) Nitrate

(c) Phosphate (d) Phosphate-phosphorus

Notes: This figure shows regression results from equation (2). MA n
(n=1,2,3,...,10) in y-axis is the moving average of CRP ratio in the past
n years. Each horizontal line represents 95 confidence interval and area
between two marks represents 90 confidence interval.

Figure 2.7: Different orders of moving average of CRP ratio
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negative and statistically significant, as is the result in column (5) when rock-type fixed

effects are also included. Results in column (5) show if the CRP ratio increases by 1%,

total nitrate concentrations in groundwater drop by about 7.9%. Table A.3 and Table A.4

contain regression results from equation (1) using regional data.

Table 2.2: Regression results of total nitrate concentration

(1) (2) (3) (4) (5)
DEPENDENT Nitrate Nitrate Nitrate Nitrate Nitrate
VARIABLES Total Total Total Total Total

CRP ratio 2.609 2.688* 2.989** -8.950* -8.213*
(1.812) (1.495) (1.389) (5.084) (4.843)

Year FE No Yes Yes Yes Yes
Month FE No No Yes Yes Yes
County FE No No No Yes Yes
Rock FE No No No No Yes
Cluster County County County County County

Obs. 10,495 10,495 10,495 10,416 10,416
R-squared 0.002 0.068 0.080 0.518 0.524

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table shows regression results estimating equation (1). The
independent variable “CRP ratio” equals to the past five-year average of

Acres in CRP
Acres in CRP and cropland

. Note that when all levels of fixed effect are included,
the coefficient of ratio is negative and statistically significant. This indicates
when considering unobservables in all level, the higher the CRP ratio, the lower
nitrate concentration in groundwater. From results in column (5), 1% increase
of CRP ratio reduces total nitrate concentration in groundwater by 7.9%.

Table 2.3 shows the results of other important categories of nitrogen compound and

phosphorus, and Table A.1 contains results of all 19 nutrient categories. Kjeldahl nitrogen

measures the sum of NH3 and organic nitrogen concentration. Column (3) in Table 2.3

shows a 1% increase in the five year moving average of CRP ratio leads to about 26.7%

decrease in phosphate-phosphorus concentration in groundwater. These results indicate

that allocation of cropland to CRP land contributes to better groundwater quality in the

long run.
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Table 2.3: Regression results of representative nutrients

(1) (2) (3)

Kjeldahl Phosphate-

DEPENDENT Nitrogen Phosphate phosphorus

VARIABLES Total Total Total

CRP ratio -3.264* -30.99** -31.03***

(1.745) (13.44) (6.658)

Year FE Yes Yes Yes

Month FE Yes Yes Yes

County FE Yes Yes Yes

Rock FE Yes Yes Yes

Cluster County County County

Obs. 11,780 5,078 5,848

R-squared 0.465 0.541 0.548

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: Kjeldahl nitrogen measures the sum of NH3 and organic
nitrogen. The results shows that 1% increase in CRP ratio leads to
3.2%, 26.6% and 26.7% decrease in Kjeldahl nitrogen, phosphate,
phosphate-phosphorus concentrations in groundwater respectively.

Table 2.4 presents regression results using the second CRP ratio specification on nitrate.

Each independent variable represents the five-year moving average of one type of land use

over total land acreage at county level, and by construction, cropland is the reference

category. Similar to Table 2.2, when county fixed effects are omitted, I find that CRP

land is positively correlated with total nitrate concentrations, and adding time trend and

seasonality do not alter the result. Column (4) and (5) show that after adding county

and rock-type fixed effect, the explaining power of this model increases. They also show the

fraction of CRP land in total land is negatively correlated with total nitrate concentration in

groundwater, but the results are statistically insignificant. This shows the regression results

are sensitive to the specification of f(ratioit) in the main model. The inclusion of other

land use variables weakens the correlation between CRP land and nutrient concentration.

The results are consistent with using the first specification of f(ratioit) but are also much
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noisier. Table A.2 shows the regression results of all 19 categories of nutrients using the

second specification.

Table 2.4: Regression results, second specification

(1) (2) (3) (4) (5)

DEPENDENT Nitrate Nitrate Nitrate Nitrate Nitrate

VARIABLES Total Total Total Total Total

RCRP 1.904 1.489 2.139 -42.43 -36.65

(4.156) (3.803) (3.390) (39.64) (37.44)

Rnoncrop -0.624 -0.563 -0.442 0.144 0.983

(1.562) (1.205) (1.116) (8.192) (8.215)

Rrangeland 2.737* 2.562** 2.706** -10.37 -14.66**

(1.625) (1.247) (1.140) (7.663) (6.109)

Rpastureland -0.961 0.601 0.432 10.96 7.579

(1.824) (1.907) (1.925) (12.68) (11.42)

Rurban 2.566 2.842** 2.872** 4.932 10.11

(1.677) (1.359) (1.336) (8.424) (7.044)

Year FE No Yes Yes Yes Yes

Month FE No No Yes Yes Yes

County FE No No No Yes Yes

Rock FE No No No No Yes

Cluster County County County County County

Obs. 10,674 10,674 10,674 10,593 10,593

R-squared 0.106 0.161 0.170 0.521 0.527

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: R(l) stands for the five-year average of Acre in land use l
Total land acreage

. This table shows
the results are sensitive to the inclusion of other land use variables. Rnoncrop con-
tains six non-cropland categories: forest, small water, large water, rural trans-
portation, minor land and federal. The reference category in this specification is
Rcropland.

2.6 Results from difference-in-differences analysis

To further examine and test whether the CRP has an impact on nutrient concentration

in groundwater, I also perform a difference-in-differences analysis with station-year level
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data generated from the same dataset. Figure 2.1 shows how CRP enrollment changed

with time. This bar chart shows that there was a transition period from 1986 to 1991

when the CRP was first implemented and CRP enrollment experienced substantial growth.

During these years CRP enrollment increased dramatically from zero to around 33 million

acres, then after 1991 CRP enrollment became stable at around 34 million acres. I take

advantage of this dramatic change in transition period and consider the whole period as the

event of “early enrollment of CRP”. This allows me to construct a pre-event and post-event

sample to perform a difference-in-differences analysis using counties with and without CRP

land.

To study this, I estimate the regression:

Nij = β0 + β1(post92 × yescrp) + β2post92 + ωi + ωr + εij (2.3)

where i stands for each monitoring station and j stands for year. post92 is a binary indicator

that equals zero for observations before 1992 and one for observations after 1992. yescrp is

also a binary indicator which equals one if a county has enrolled in the CRP in the study

period, and equals zero if a county never enrolled in the CRP. ωi is a monitoring station

fixed effect, and ωr is the rock fixed effect. To estimate the before and after transition period

effect, I use a subset of my main dataset, which contains only observations from 1982 to

1985, and from 1992 to 1997. It also consists of only counties that either never enrolled

in the CRP in this period, or counties that enrolled in CRP in 1987 (the earliest record

in the NRI database). As CRP contracts are long term, it makes sense for me to consider

1986 to 1991 as one event, which is the early enrollment of CRP. Therefore, 1982 to 1985

is the “pre-event” period, and 1992 to 1997 is the “post-event” period. This construction

also takes into consideration that changes in land use may need years to affect groundwater

quality.

Most nutrients from the main dataset have too few observations left for this model. Table

2.5 shows regression results of equation (2) using log value of nitrate, nitrite and inorganic

nitrogen concentrations as the dependent variables. Column 1 and 2 in Table 2.5 show that
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after the transition period, counties that have enrolled in the CRP in 1987 have around 55%

less nitrate (dissolved) and around 34% less nitrite (dissolved) in groundwater, compared

with counties that did not enroll in the CRP. I also run regressions with cadmium and lead

as placebo tests. Cadmium and lead are pollutants that are harmful to human health, and

they most likely come from non-agricultural activities. Column 4 and 5 shows that enrolling

in CRP does not have statistically significant effect on cadmium and lead concentrations

in groundwater, and this provides evidence that the change of nutrient concentration in

groundwater comes from the implementation of the CRP.

Table 2.5: Effects of the CRP on nutrient concentration in groundwater

(1) (2) (3) (4) (5)

DEPENDENT Nitrate Nitrite Inorganic Nitrogen Cadmium Lead

VARIABLES Dissolved Dissolved Dissolved Dissolved Dissolved

post92×yescrp -0.552** -0.339** -0.0722 0.263 -0.0520

(0.217) (0.165) (0.0846) (0.233) (0.402)

post92 = 1 0.00869 -0.176*** 0.0566 -0.277** -1.809***

(0.0788) (0.0658) (0.0595) (0.112) (0.221)

Station FE Yes Yes Yes Yes Yes

Rock FE Yes Yes Yes Yes Yes

Cluster Station Station Station Station Station

R-squared 0.934 0.732 0.933 0.672 0.758

Obs. 11,630 11,006 18,126 3,890 4,101

Stations 4266 4050 6715 1663 1740

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents results from the CRP difference-in-differences analysis. Dependent variables
are the log value of different nutrient concentration at the station-year level. post92 is an indicator
variable for the post-transition period. yescrp is an indicator variable of whether a county was enrolled
in the CRP in 1987. post92 × yescrp is the interaction term and is the interested variable in these
regressions. The parameter of term post92 × yescrp presents that after transition period, what would
be the difference of log value of nutrient concentration in counties that enrolled in the CRP compared
to counties that was not enrolled in the CRP.

Equation (4) below is a more flexible form of equation (3).
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Nij =

29∑
j=2

γi(yescrp ∗ yearj) +

29∑
j=2

µi(yearj) + αi + αr + εij (2.4)

here i stands for monitoring station and j stands for year. αi are station fixed effects, and

αr are rock fixed effects. This regression result shows year to year difference in counties

that enrolled in the CRP and counties that did not enroll in the CRP, using 1986 as a

reference year. Figure 2.8a shows that counties without and without CRP land experienced

non-differential pre-trend of nitrate (dissolved) concentration in groundwater before 1986,

After 1986, nitrate concentration in counties that enrolled in the CRP started to decrease,

and became stable after about five years (after 1991). This is consistent with the lag effect

discussed when estimating equation (1). Figure 2.8b shows there is no visible trend before

and after 1986 for inorganic nitrogen, and Figure 2.8c shows there is a difference in trend

before and after 1986 for nitrite. Figure 2.9a and Figure 2.9b present the results using

concentrations of cadmium and lead in groundwater. Figure 2.9a shows cadmium did not

have a change in trend. Lead seems to see decreasing trend after 1996, but no apparent

change in trend between 1982 and 1996 and the decrease did not converge to a steady level.

These figures are consistent with regression results listed in Table 2.5.

To better understand the result from the difference-in-differences method, I compare

the point estimate in column 1, Table 2.5, to results from equation (1). The average CRP

ratio in the treatment group in the difference-in-differences dataset is 0.108, and zero in the

control group. From the results in Table 2.2, a 10.8% positive difference in CRP ratio means

10.8 × 7.9% ≈ 85.3% less nitrate concentration in groundwater. This number is larger in

magnitude than the result in column 1 in Table 2.5 but is consistent with the converged

level in Figure 2.9a. An 85.3% decrease seems like a drastic change, but the starting value

of nitrate concentration in groundwater is a small number. For example, the mean nitrate

concentration in the treatment group in the difference-in-difference sample is 5.28 mg/L,

and an 85.3% decrease means a reduction of 4.5 mg/L dissolved nitrate in groundwater13.

13The mean of CRP ratio in the full sample is 0.043. Mean nitrate concentration in the full sample is
0.54mg/L



www.manaraa.com

26

Figure 2.8a: Year to year difference, nitrate

Figure 2.8b: Year to year difference, inorganic nitrogen
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Notes: These figures plot the year to year difference in nutrient concentra-
tion between counties that enrolled in the CRP and counties with zero CRP
land, using 1986 as the reference year. Dashed lines represent 95 percent
confidence intervals. The dependent variable is log value of nutrient concen-
tration at station-year level. Regressions control for year and station fixed
effects.

Figure 2.8c: Year to year difference, nitrite

Figure 2.9a: Year to year difference, cadmium
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Notes: These figures plot year to year difference of cadmium or lead con-
centrations between counties that enrolled in the CRP and counties with
zero CRP land, using 1986 as the reference year. Dashed lines represent
95 percent confidence intervals. Dependent variable is log value of nutrient
concentration at station-year level. Regressions control for year and station
fixed effects.

Figure 2.9b: Year to year difference, lead

2.7 Conclusions and discussion

This paper studies how land use, especially land enrolled in CRP, influences nutrient

concentrations in groundwater. Using a fixed effects model, I find evidence that long-term

moving average of CRP ratio is negatively correlated with nitrate concentration in ground-

water: 1% increase in the five-year moving average of CRP ratio leads to 7.9% reduction

in nitrate concentration and 27% reduction in phosphorus concentration in groundwater.

However, I find this result is sensitive to model specification. After adding other land use

variables to the main model, there is weak evidence (consistent but noisy) that long-term

moving average of the fraction of CRP land in total land is negatively correlated with nutri-

ent concentrations in groundwater. I further examine whether counties that enrolled in the

CRP experienced different trends in nutrient concentration compared with counties that

did not enroll in the CRP with a difference-in-differences analysis. I find that in the few
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years after the implementation of the CRP, counties that enrolled in the CRP has 55% less 

nitrate and 34% less nitrite in groundwater, compared with counties that did not enroll in 

the CRP.

Apart from finding that CRP enrollment has a negative effect on nitrate concentration 

in groundwater, I also find that there exists significant lag effect in this result. It takes at 

least five years after enrolling land in CRP for changes in nutrient concentrations in ground-

water to become detectable. This finding is inspiring as nutrient pollution in groundwater 

is extremely difficult to deal with, such that prevention from future pollution is usually 

the best way to improve groundwater quality. This is also an important indicator that 

early termination of CRP contracts may lead to unexpected loss of groundwater quality. 

Groundwater is currently one category in EBI with relatively small weight (25 out of 100 

in water quality category), but with findings in this paper, I hope to provide evidence that 

CRP enrollment may have a more substantial impact on groundwater quality than previ-

ously studied. 
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3. RELIABLE DRINKING WATER SUPPLY AND CITIES’
RESILIENCE TO DROUGHT

Access to safe and reliable drinking water is essential to economic activities, especially

during extreme weather events. Drinking water facilities’ choice of supply source determines

their ability to maintain supply for domestic needs and economic activities under unexpected

weather shock. This paper examines how the choice of drinking water supply source affected

population resilience during droughts in the last century. We use the most comprehensive

dataset on municipal drinking water facilities from the 1920s to the 1960s, a period that

witnessed a substantial expansion in the use of groundwater as a municipal drinking water

supply source as well as a series of severe droughts in the United States. Using a fixed effect

model we find evidence that having groundwater as a source of municipal water supply

helps with population resilience during drought, especially for communities that locate on

major aquifers. This finding provides evidence that the choice of supply source matters

in maintaining population during drought and provides insights on the design of drinking

water infrastructure in developing areas.

3.1 Introduction

Water security is essential to human beings, especially during extreme weather events.

City developers face the challenge of designing drinking water infrastructure that can toler-

ate future population growth, increasing economic activities and extreme weather shocks.

This paper examines the relationship between choices of municipal drinking water supply

sources and population resilience during drought. Previous work has studied how climate

change and severe weather events affect fresh water system, land use and urbanization pro-
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cess in the United States. Another topic that was widely studied is how to improve public

drinking water system to adapt to increasing need in modern communities and more fre-

quent droughts due to climate change [Mosley, 2015, Nace et al., 1965, Singh et al., 2014,

Hansen and Libecap, 2003]. Many researchers have also pointed out the importance of

groundwater during drought in modern societies [Foster, 2001, Taylor et al., 2013, Baker

et al., 2004, Mosley, 2015, Singh et al., 2014]. However, few studies examined the begin-

ning of modern drinking water infrastructure to evaluate how groundwater matters during

drought when the technology was not well developed. This paper fills this gap by exploring

the relationship between choice of drinking water supply source and population resilience

during drought in the U.S. We compiled the most comprehensive drinking water facility

dataset that covers a wide time range from the 1920s to the 1960s. With a fixed effect

model, we find that in large communities, having groundwater as drinking water supply

source significantly improve the resilience of population during drought, especially in com-

munities located on a major aquifer.

Organized municipal drinking water supply systems appeared as early as ancient Greece.

Today drinking water infrastructure remains a vital part of city planning and is a long-term

investment that expects a life of over 100 years (Marshall, 2008). In the United States,

the government spent about $10 billion annually on water mains in the 1920s and about

$30 billion annually by the early 1950s. A large part of U.S. drinking water infrastructure

people now rely on was built in mid 20th century, and the cumulative cost of that original

investment exceeds $2 trillion (EPA, 2011). By studying the beginning of modern drinking

water infrastructure history, one gains valuable information on the function of drinking

water infrastructure on city growth and population resilience under an environment with

relatively few regulations.

Increasing population in large communities means larger demand for treated water. It is

known that groundwater, due to its generally high quality and easiness to access, has always

been the preferred source of municipal water supply, for both domestic and industrial uses
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[Foster, 2001]. However, whether different sources of municipal water supply has impacted

urbanization is typically challenging to answer ex-ante. Most cities grow fastest during a

relatively wet period, and city planners and dwellers may overlook the possibility of severe

drought in the future [Nace et al., 1965]. The United States went through three severe

drought periods in the 20th century: the Dust Bowl drought in the 1930s, the 1950s drought

that hit Southwestern United States (especially Texas) the most, and the 1987-1989 drought

which started from the Southeastern United States and destroyed crops almost nationwide.

Of these three periods, the first two are covered by dataset used in this paper.

The maps in the right column of Figure 3.1 present census population growth rate at the

county level from the 1920s to 1960s. They show that during the 1930s, the Great Plains

region experienced the most severe population loss. In fact, approximately 250,000 people

moved to from Midwestern states to California by 1940, and around 2.5 million population

left the Plains states in the 1930s [Hansen and Libecap, 2003, Martin, 2008]. Figure 3.1

also shows that population loss areas in the 1950s and 1960s coincide with drought-hit

areas during that period. Notice that though California, especially Southern California,

was stricken by drought in the 1950s, it did not experience population loss. The municipal

drinking water facilities dataset shows that in California, the number of water facilities that

have access to groundwater supply increased significantly after 1945, compared with the

rest of the country (five out of six districts in the sample have added groundwater supply

sources). This finding supports the assumption that having access to groundwater supply

helps with population resilience during drought.



www.manaraa.com

35

Notes: Maps on the left of Figure 1 describes frequency of drought in the past five years at each survey
year. Maps on the right of Figure 1 presents the population growth rate using census population. Notice
how drought hit areas in 1943 drought map coincides with the areas that experienced most population loss
in population loss in population growth rate map, also how population loss areas move from north great
plain areas down to Texas, also matches the drought hit areas in the 1950s.

Figure 3.1: Population growth rate and drought hit areas
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This paper takes advantage of detailed records of supply source and population supplied

information from the drinking water facility dataset and repeated occurrence of droughts

in the last century. We focus on the access to groundwater supply source in this paper

because this period of interest witnessed the start of adopting groundwater supply source

in municipal drinking water facilities in the whole nation. Many developing countries and

districts still use similar drilling technology and face similar regulations as the United States

did during that period. We hope this research can provide insight on better utilization of

water resources and water infrastructures that can help with population resilience under

extreme weather shock.

The paper proceeds as follows: section 2 describes the datasets used in this paper,

section 3 provides summary statistics, section 4 contains model and regression results, and

the final section concludes.

3.2 Data

The data are composed of two major components: municipal water supply data and

drought index constructed from the Palmer drought index.

3.2.1 Municipal water supply data

This municipal water supply dataset is the first to aggregate detailed infrastructure

information from the 1920s to 1960s in the U.S. All data are digitized from the original

municipal drinking water treatment facility surveys carried out mostly by Department of

Public Health. The data contain 11 distinct years: 1924, 1930, 1943, 1945, 1954, 1956,

1958, 1960, 1962, 1963 and 1964.

The 1924 data come from the Filtration Plant Census [Gillespie, 1925] and contain in-

formation on water filtration plants with a capacity of 1 million gallons per day (M.G.D)

or greater. The data include the name of each city, its source of water supply, filtration

capacity, population supplied, date of installation and simple remarks of what treatment

technology was used. The 1930 data (Wolman, 1933) on water purification plants are cat-
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egorized into plants with treatment other than simple chlorination and plants with only

chlorination. It appears that in the first case surface sources of supply takes up around 85%

of all facilities, while in the latter surface sources of supply and ground sources of supply

are almost equal. 1943 data (“National Census of Water”, 1943) contains water treatment

plants that serve communities with a population of 100 or more in the continental United

States. In 1943 and later years, water supply surveys provide more detailed information

regarding capacity, water storage, treatment technology and ownership. 1945 data (“Inven-

tory of Water”, 1945) is the only year that contains data of both water treatment facilities

and sewage facilities.

1954, 1956, 1960, 1962, 1964 and part of 1958 data come from a series of surveys:

Municipal water facilities – communities of 25,000 population and over by U. S. Public health

service (“Municipal Water Facilities”, 1956-1964). Data from these years are more consistent

in format than other years and have most detailed facility characteristics. However, they

also contain much fewer observations than 1945, 1958 and 1963 surveys (“Municipal Water

Facilities”, 1958 and 1963) due to their population threshold.

Though water supply data are at facility level, many large cities have multiple municipal

water supply facilities. To best preserve the details from this unique dataset, all water

supply data are aggregated to community (mostly city or township) level for the main

analysis. Populations are summed to the community level, and supply source is categorized

as whether the whole community has groundwater supply source or surface water supply

source (both are binary indicators).

3.2.2 Palmer drought index data

Palmer drought severity index (PDSI) (Historical Palmer Index) is used as an indicator

of the severity of droughts in this paper. The data come from National Oceanic and Atmo-

spheric Administration (NOAA). PDSI data are recorded monthly from over 300 climate

divisions and usually range from -6 to 6. Moderate drought is classified by PDSI value

between -2 and -2.99, and severe drought is classified by PDSI value below -3, and extreme
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drought by PDSI value below -4. This paper uses the five-year frequency of PDSI below -2

to establish a measure of how often an area experiences drought.

3.2.3 U.S. aquifer data

Aquifer information comes from USGS website. We use ArcGIS to map observations

in our water facility dataset to U.S. aquifers. Districts that overlap with both major and

minor aquifer are categorized as where their center point locates. Minor aquifer, or confining

unit, means such areas are underlain by low-permeability deposits and rocks, and have

very limited groundwater supply. Large areas in the eastern, northeastern and north-

central parts of United States are also categorized as minor aquifers because these areas

are underlain by crystalline rock which has minimal permeability. However as these rocks

extend over large areas, they are the only reliable source of water supply in many places and

provides large amount of groundwater (“Aquifer Basics”, 2016). Of all the 19,581 distinct

districts in the drinking water dataset, 12,117 districts locate on major aquifers and the

rest 7,464 districts locate on minor aquifers. All districts are mapped to one of these two

aquifer categories.

3.3 Summary statistics

Table 3.1 summarizes the number of observations in our data by year. The whole dataset

contains 58,228 observations from 11 survey years and 19,581 unique districts. The number

of observations per year varies between 492 and 18,557 because some surveys contain only

communities with over 25,000 population, and other surveys contain communities with over

100 population. Another way to look at the dataset is to check whether it provides a series

of reasonably consistent observations over all the years. In the full dataset there are 11 time

periods, and if we keep only the observations that appear at least nine times in this dataset,

this leaves us with 3,027 observations in total from 299 distinct districts. From now on we

will refer to this more balanced dataset as the “small panel” and the whole dataset as the

“ large panel”. In the small panel, there are 207 districts located on major aquifers and 91



www.manaraa.com

39

districts located on minor aquifers. Figure 3.2 and Figure 3.3 present the location of the

facilities in the large and small panels.

Table 3.1: Number of observations by year

Year large panel small panel

1924 518 170

1930 2515 284

1943 3574 249

1945 17170 277

1954 493 292

1956 486 291

1958 12809 299

1960 554 295

1962 679 285

1963 15191 291

1964 804 294

total number of observations 54793 3027

number of unique facilities 19574 299

Notes: The highly imbalanced results of column 1 is a result of differ-
ent design of the surveys. In 1945, 1958 and 1963, facilities that serve
over 100 people are provided in the survey, while in 1954, 1956, 1960,
1962 and 1964 the survey only covers communities with population
greater than 25,000.

Figure 3.4 describes the change of supply sources over the years in the small panel.

It shows the percentage of “ground only” sources grew fast from 1924 to 1930, then kept

almost constant after 1930. Also, it shows the percentage of “both ground and surface”

steadily increased over time. Two possible reasons have contributed to the sharp change

from 1924 to 1930 in this plot: 1924 survey criteria is based on treatment plant capacity

(one million gallons per day and over), while other surveys set the criteria by population

supplied. This results in about 100 fewer observations in 1924 than other years in the small

panel, which means many districts that were surveyed in 1924 did not appear enough times

(eight more times) in the following surveys. Another reason is the increased demand for

groundwater for municipal and irrigation use. By the 1920s, many areas had such urgent

demand for water that they faced the danger of overdevelopment. At this time, geology

and hydrology investigation made it possible to widely use groundwater (Hornbeck and
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Notes: Light blue areas ar major aquifers, blank areas are minor aquifers. Green dots are obser-
vations in the small panel.

Figure 3.2: Map of districts in the small panel

Keskin, 2014; “The 1920’s”, 2016). Furthermore, with the development of diesel, electric

pumps and drilling technology borrowed from oil drilling such as internalized power source

and portable tool, groundwater became major water supply in places with limited access

to surface water in the following two decades [Lund et al., 2014]. Figure 3.4 shows that

districts with only surface supply were adding ground sources and switch into “both ground

and surface” category over the years, which provides evidence of increasing need for new

supply sources in those years.

Figure 3.5 describes the distribution of supply sources by region. It shows that West

region had much higher percentage of both ground and surface sources than the other three

regions. In the West region, around 66 percent of “surface only” places have added ground

source from 1924 to 1954. This change mostly comes from the state of California: from

1945 to 1954, five out of six of the districts in California with only surface sources have

added ground sources.
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Notes: Light blue areas are major aquifers, blank areas are minor aquifers. Green dots are
observations in the large panel.

Figure 3.3: Map of districts in the large panel

3.4 Model and regression results

This paper employs a fixed effect model to estimate the impact of different drinking

water supply sources on population growth. We estimate the following model:

yit = β0 + β1ngit + β2dit + β3ngitdit + αi + αt + εit (3.1)

where ngit is a binary indicator of drinking water supply source at district i and year

t: ngit = 1 means there is no groundwater (only surface water) as supply source, ngit = 0

means there is groundwater or both ground and surface water as supply source. dit is a

drought index created from the Palmer Drought Severity Index. It measures the frequency

of drought in the past five years and is denoted “drought 5” in regression result tables.

ngit×dit is the interaction term of water supply source and drought frequency, and β3 is the

coefficient of interest that estimates how different supply source affects population growth

during drought years. yit is the log of the estimated population supplied in district i during

year t, which are from the water dataset. Though the dataset also provides other variables

that may represent the prosperity or resilience of a district, such as census population,
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Figure 3.4: Percentage of different sources by year

number of accounts served and number of meters, we choose to use estimated population

served because census population is decennial, and number of accounts and number of

meters contain a significant amount of missing values. αi stands for district fixed effect,

and αt stands for year fixed effect. We also run regression using alternative expression as

a check of sensitivity, that is, we use “no surface water” as supply source indicator in the

equation1. Results from this regression are presented in the Appendix.

1The alternative specification is

yit = γ0 + γ1nsit + γ2dit + γ3nsitdit + ρi + ρt + ξit, (3.2)

where nsit is a binary indicator for surface water supply: nsit = 1 means there is no surface water (only
groundwater) as supply source, nsit = 0 means there is surface water or both ground and surface water as
supply source. Note these two specifications are not symmetric by construction (ngit is not the complement
set of nsit). Thus running both specifications allows us to test the sensitivity of our model to different
classifications of supply source. γ3 is the coefficient of interest, ρi stands for district fixed effect, and ρt
stands for year fixed effect.
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Figure 3.5: Percentage of different supply source by region

3.4.1 Results from the small panel

Table 3.2 contains regression results from the small panel2. All observations of sup-

ply source and estimated population supplied are at district-year level, and drought index

drought 5 is at climate division-year level. The water facility dataset shows that it is com-

mon for districts in major cities to share the same source of supply. Column (1) to column

(3) show results using community (district) fixed effect with standard errors clustered at

the district level. We also include regressions on subsets of the small panel based on aquifer

categories. Columns (2) and (5) show results from observations located on major aquifers,

columns (3) and (6) are results from observations located on minor aquifers.

Since the small panel contains only observations that appear at least nine times in the

whole dataset and most water facility surveys use population as a threshold, this means the

small panel contains mostly large communities. The regression results show that among

2See Table B.1 for results estimating equation (2).
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Table 3.2: Regression results from small panel

(1) (2) (3) (4) (5) (6)

Small panel: Log Estimated Population Supplied

ng × drought 5 -0.389*** -0.496*** -0.0773 -0.347*** -0.467*** 0.0301

(0.122) (0.158) (0.116) (0.133) (0.168) (0.176)

ng 0.123 0.181 -0.0457 0.219* 0.296* -0.0754

(0.108) (0.152) (0.0419) (0.121) (0.162) (0.144)

drought 5 0.241*** 0.255** 0.133** 0.191** 0.223* 0.0452

(0.0830) (0.108) (0.0526) (0.0910) (0.117) (0.112)

Community FE Yes Yes Yes No No No

County FE No No No Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Aquifer All Major Minor All Major Minor

Observations 2,732 1,912 820 2,733 1,913 820

Communities 299 208 91 299 208 91

Counties 267 189 83 167 189 83

R-squared 0.858 0.828 0.951 0.750 0.727 0.917

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table represents regression results from estimating equation (1) using data in the small
panel, where observations appear at least nine times in the whole dataset. Term ng× drought 5 is the
coefficient of interest, and it represents the effect of “no groundwater” on population during drought.

these relatively large communities, lacking groundwater during droughts has a negative

impact on the population. This confirms the assumption that having access to groundwater

supply source helps with population resilience during drought.

Column (2) shows that for communities located on major aquifer where groundwater is

relatively easy to access, lacking groundwater supply source during drought has a greater

negative impact on the population than the general case. On the other hand, the regression

results show that for large communities located on minor aquifers, the supply source does

not have a statistically significant impact on the population.
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3.4.2 Large panel

Table 3.3 presents our results using the large panel3. The regression results show that

having surface water as the single supply source is correlated with larger population. Col-

umn (2) and (5) are regression results using the major aquifer subset, and column (3) and

(6) are results using the minor aquifer subset. The ng × drought 5 term in column (1) is

negative and statistically significant, which shows that lacking access to groundwater supply

source decreases population during drought, consistent with the regression results from the

small panel.

The interaction term of column (6) is positive and statistically significant. This may

indicate that county level fixed effect may not have captured every unobserved characteris-

tics, and supports our choice of using community level fixed effect. Not only the choice of

drinking water supply source may have impact on population resilience, this choice can also

be affected by other variables. The choice of supply source could be a result of continuous

drought, and it could also be the result of expanding population.

3.4.3 Regression results by region

The drought maps in Figure 3.1 show that drought severity and population growth rate

vary by region. To test for heterogeneity among different regions, we also run regressions

by region. It seems our results are consistent but noisy (Table 3.4 and Table 3.5). Results

using the West region data and the Northeast region data are very different between the

small panel and large panel. It seems that smaller communities in the West region were

significantly affected by lacking groundwater during drought, however, larger communities

were not affected by water supply source during drought. On the other hand, it seems that

in the Northeast region, it is larger communities that were affected the most by the lack

of groundwater supply source. The distinction indicates possible heterogeneity in water

supply source decisions between large and small communities, and among different regions.

3See Table B.1 for results estimating equation (2).
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Table 3.3: Regression results from large panel

(1) (2) (3) (4) (5) (6)

Large panel: Log Estimated Population Supplied

ng×drought 5 -0.220*** -0.305*** -0.0672** -0.0379 -0.225*** 0.209**

(0.0242) (0.0347) (0.0317) (0.0608) (0.0843) (0.0843)

ng 0.0975*** 0.112*** 0.0597** 0.770*** 0.828*** 0.745***

(0.0203) (0.0278) (0.0259) (0.0350) (0.0457) (0.0552)

drought 5 0.201*** 0.250*** 0.0995*** 0.00845 0.0694* -0.0401

(0.0186) (0.0243) (0.0250) (0.0306) (0.0368) (0.0518)

Community FE Yes Yes Yes No No No

County FE No No No Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Aquifer All Major Minor All Major Minor

Observations 36,094 23,860 12,234 39,408 25,650 13,678

Communities 20,820 12,953 7,867 20,820 12,953 7,867

Counties 3088 2423 1436 3088 2423 1436

R-squared 0.969 0.966 0.977 0.545 0.576 0.571

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table represents the regression results using data from large panel. Column (2) and (5) are
results using the major aquifer subset of the large panel, and column (3) and (6) are results using the
minor aquifer subset. The term ng × drought 5 is the coefficient of interest, which represents the impact
of choice of supply source on population during drought.

3.5 Conclusion

In this paper, we take advantage of a unique and comprehensive drinking water in-

frastructure dataset and study how drinking water supply source affects population re-

silience during droughts. Using a fixed effect model, we find evidence that having access

to groundwater supply helps maintain city population during drought, especially for larger

communities and communities located on major aquifers. Our results are robust to different

classifications of water supply sources. We run regressions using both balanced subsample

and imbalanced (but significantly larger size) subsample; we also run regressions on a na-

tional scale and by different region. Our results are mostly consistent but can get noisy

with imbalanced subsample.
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4. THE EFFECTIVENESS OF PHOSPHORUS LAWN FERTILIZER
BANS IN FLORIDA

Phosphorus runoff has been a major environmental issue in the United States for

decades. Over-application of phosphorus fertilizer in both farm and non-farm sectors can

cause surface water pollution. This paper looks into the effect of a series of rainy season

phosphorus lawn fertilizer bans in Florida from 2006 to 2015. These bans require zero

phosphorus lawn fertilizer application from June to September in eleven Florida counties.

By studying the before-ban and after-ban changes on lawn fertilizer purchases in ban and

non-ban counties, we show that these bans result in an average of 21.7% decrease of fertilizer

purchases in ban counties.

4.1 Introduction

Phosphorus pollution causes serious water quality problems worldwide. Excess phos-

phorus in surface waters results in dramatic changes to aquatic ecosystems and leads to the

loss of biodiversity. Phosphorus pollution comes from both agricultural and urban activi-

ties, such as over-application of phosphorus fertilizer, soil erosion, and urban runoff. High

phosphorus levels contribute to harmful algal blooms in U.S. coastal waters and cost an

estimated $82 million annually, or $4,162 per kilometer of coastline1. This estimation in-

cludes losses in public health, commercial fisheries, recreation and tourism, and monitoring

and management sectors [Granéli and Turner, 2006].

Florida has been suffering from nutrient over-enrichment in waters for decades. Phos-

phorus is a key contributor to harmful algae blooms in inland and coastal waters in Florida.

1 Averaged over the 14-year period from 1987 to 2000, in 2005 dollars
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High phosphorus levels in Florida lakes have destroyed sport fish population, and fast-

growing algae blooms have led to death of coral reefs and underwater vegetation in coastal

area. Poor water quality also endangers human health [Dutzik and Baliga, 2004]. Algae

outbreaks have brought real social cost to Florida. In a 2012 report, the total use and

non-use economic value of Florida’s clean water amounts to $1.3 to $10.5 billion dollars2

annually3 [Stanton and Taylor, 2012]. Different policies have been implemented to control

phosphorus in Florida over the years, such as building Stormwater Treatment Areas, requir-

ing best management practices, creating surface or groundwater storage for seasonal water

surpluses and constructing water quality credit markets.

This paper focuses on a policy that aims at reducing phosphorus from home lawn fer-

tilizer application during rainy season. Beautiful green lawns are highly valued by people.

However, the social cost of maintaining green lawns exceeds the private cost. In addition to

Florida, eleven states4 have enacted laws that restrict applying phosphorus fertilizer to lawn

and turf since 2002 [Miller, 2012]. Many Florida soils are naturally high in phosphorus, and

rainy season means heavier runoff which contributes to transporting excess phosphorus to

local waterways. The ban was first initiated in Sarasota County, Florida in 2007, and ten

more coastal counties in Florida adopted this ban from 2008 to 2015.

In this paper, we use a restricted weekly scanner dataset at store level from Nielsen,

obtained through the Kilts Center for Marketing and the University of Chicago. It exploits

spatial and temporal variations in Florida fertilizer ordinances and examines the effective-

ness of the bans by studying how fertilizer consumers in ban counties responded to this rainy

season ban. We find evidence that ban counties experienced a drop in fertilizer purchases

as a result of the ban.

2In 2010 dollars
3The authors calculated potential non-use value for improvements to Florida’s water quality to be $448

million (using average EPA 2010 willingness-to-pay (see U.S. Environmental Protection Agency (2010) Sec-
tion 13.2 for details)) and $3.5 billion (using maximum willingness-to-pay). Total use and non-use value
($1.3 to $10.5 billion) is calculated as three times the above non-use value ($448 million to $3.5 billion). See
Page 24 of Stanton and Taylor (2012) for details.

4 Namely Illinois, Maine, Maryland, Michigan, Minnesota, New Jersey, New York, Vermont, Virginia,
Washington, Wisconsin and Florida.



www.manaraa.com

52

This paper contributes to the existing literature on incomplete environmental regula-

tions. Previous work on the effectiveness of similar urban phosphorus fertilizer regulations

often analyzes from an environmental science perspective, which means the effectiveness of

such regulations is measured by changes in post-regulation phosphorus concentrations in

surface water and soil5 [Vlach et al., 2010, Lehman et al., 2009, MDA, 2007, Hochmuth

et al., 2012]. Alternatively, we examine the effectiveness of phosphorus lawn fertilizer bans

from an economic perspective. We look into how this series of bans affect consumer be-

havior, and we examine their effectiveness by testing whether there is spillover in sales.

We provide evidence that fertilizer sales in ban counties during summer decreased after the

bans were implemented, and there is strong spillover effect on fertilizer sales to before-ban

months. In addition, we show that the series of incomplete regulations did not result in

spillover effect on fertilizer sales between ban counties and non-ban, border counties, which

agrees with our assumption of a ban on use.

Also, much of existing environmental economics literature on incomplete regulations

focus on air policies, and our work contributes to the literature by studying a water policy.

Our paper also differs from previous work on incomplete regulations of household phos-

phorus product such as Cohen and Keiser (2017) by studying a different good6. The two

studies are also different in that this paper studies a use ban which requires residents to

follow the regulations voluntarily , compared with Cohen and Keiser (2017) which studies a

5For example, Vlach et al. (2010) conducted a paired watershed study between three sites in Plymouth,
Minnesota where phosphorus lawn fertilizer was restricted, and three sites in Maple Grove, Minnesota where
phosphorus lawn fertilizer was allowed. This study found evidence that phosphorus fertilizer restriction leads
to decreased phosphorus level in the surface water. Lehman et al. (2009) analyzed changes in total and
dissolved phosphorus concentration in Huron River following a phosphorus fertilizer restriction in the city
of Ann Arbor. They found evidence of reduced phosphorus concentration but suggested the reduction in
phosphorus was also subject to overlapping policies. Other studies that focus on phosphorus runoff (including
turf-grass runoff and watershed runoff) after Minnesota enacted a statewide law to restrict the application
of phosphorus lawn fertilizer have reached inconclusive results on the efficacy of this regulation [MDA, 2007].
Hochmuth et al. (2012) provides a scientific review on phosphorus lawn fertilizer regulations and discusses
potential unintended consequences of the Florida rainy season phosphorus bans from an environmental
science perspective. They focus on the potential unintended changes of phosphorus concentration as a result
of the complex interaction between landscape management, plant species, nutrient uptake, rainfall, irrigation
management and overlapping regulations.

6Cohen and Keiser (2017) studies the unintended consequences of incomplete and overlapping regulations
by looking into bans on phosphate in dishwasher detergent in Spokane, Washington.
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sales ban that directly put restrictions on the supply side. Our work also contributes to the

environmental economics literature by taking advantage of a series of bans implemented

in different counties, different years but in the same state. This allows us to isolate the

average effect of the series of bans and minimize possible impacts from overlapping policies,

compared to previous studies that focus on a one-time statewide or municipal regulation.

The rest of the paper proceeds as follows: section 2 introduces ban details, section 3

describes the dataset used in this paper, section 4 presents the empirical model, section 5

discusses the preliminary regression results, and the final section concludes.

4.2 Ban details

The rainy season phosphorus ban in Florida was first implemented in Sarasota County

in 2007. Rainy season means June 1st to September 30th, and this ban is also referred to as

a “summer ban”. This ban requires that no phosphorus fertilizer shall be applied to lawn

(turf) during rainy season. It aims at household use of fertilizer, which means it does not

ban sales of fertilizer (except in Pinellas County) and it only affects non-farm sector. This

ban is not the only restriction on the home use of fertilizer in Florida. Before the series

of rainy season ban there already existed other restrictions on lawn and turf fertilization,

such as restrictions on total nutrient content per application or per year and restrictions on

fertilizer application under storm/flood/hurricane warning.

One example of a related regulation on fertilizer application is a restriction on the

total content of nitrogen and phosphorus per application and all year round. For example,

Charlotte County requires that phosphorus content per application cannot exceed 0.25

pounds P2O5 / 1000 square feet and per year application cannot exceed 0.50 pounds P2O5

/ 1000 square feet [Charlotte County, 2008]. These restrictions are typical among all Florida

counties. These related regulations are mostly according to Florida Green Industry Best

Management Practice (GI-BMP) manual, which was first established in 2002 [FDEP, 2010].

These rules also have exemptions for golf courses, public recreational & stadium fields, bona
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fide farm operations, newly established turf and/or landscape plants (first 60 days after

installation or planting), damaged turf and/or landscape plants (60 days) and damaged

turf and/or landscape plants (during rainy season, with proper document). Other than

rainy season phosphorus ban, Pinellas County, Manatee County and St. Lucie County also

ban phosphorus lawn fertilizer all year round, except for where phosphorus deficiency has

been demonstrated by a soil analysis test performed by a State of Florida certified lab.

Only Pinellas County bans both the use and sale of phosphorus lawn fertilizer. All other

ban counties only ban the use of phosphorus lawn fertilizer. This means the rainy season

ban on phosphorus lawn fertilizer requires households to follow the rules voluntarily, and

there are no requirements of monitoring or testing exactly what fertilizer is applied to lawn

and turf. If a person is found to violate the ban, the government will issue a warning for the

first time. One will not be fined unless he/she violates the ban multiple times, as a Cocoa

Beach code enforcement officer commented: “...you want to educate them before they ever

do get fined...” (Florida Today). To help residents pick the right fertilizer that complies

with the ban, Florida also requires all fertilizer producers to label the content of nutrient

on fertilizer packages clearly. Usually, there are three numbers that represent the primary

nutrients: nitrogen(N)-phosphorus(P)-potassium(K). A string of 10-10-10 means this bag

of fertilizer contains 10% of N, P, K each. Thus, consumers in ban counties need to choose

from fertilizers that are labeled “0” in the middle if they need to fertilize home lawns during

the rainy season.

After Sarasota County adopted rainy season ban countywide in 2007, Lee County, Or-

ange County, Manatee County, Pinellas County, Charlotte County, Brevard County, Indian

River County, Volusia County, St. Lucie County and Martin County have gradually adopted

this ban from 2008 to 2015. Table 4.1 and Figure 4.1 show the temporal and spatial vari-

ation of counties that adopted this ban. Figure 4.1 also shows that all ban counties are

along the coastline. Ban counties are filled with light to dark blues indicating early to
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late implementation year. Shaded area means the county bans phosphorus all year round

instead of only rainy season blackout.

Table 4.1: Ban Counties and Details

Number of Number of

County Ban Start Year Ban Type Ban Period Stores Observations

Sarasota 2007 Ban on Use Rainy Season Ban 42 1,774

Lee 2008 Ban on Use Rainy Season Ban 73 3,100

Charlotte 2008 Ban on Use Rainy Season Ban 16 694

Orange 2010 Ban on Use Rainy Season Ban 129 5,536

Pinellas 2010 Ban on Sale All Year Ban 128 4,571

Manatee 2011 Ban on Use All Year Ban 37 1,715

Brevard 2014 Ban on Use Rainy Season Ban 65 2,896

Indian River 2014 Ban on Use Rainy Season Ban 15 827

Volusia 2014 Ban on Use Rainy Season Ban 74 3,274

St. Lucie 2014 Ban on Use All Year Ban 30 1,062

Martin 2015 Ban on Use Rainy Season Ban 16 687

Total 625 26,136

4.3 Data

The main dataset used in this paper is a restricted store-level scanner dataset7 obtained

through the Kilts Center for Marketing and the University of Chicago8. This dataset

provides information on weekly store-level purchases of all brands of lawn fertilizers and

other products. It provides detailed information such as brands, UPC, and description of

content for each entry. The detailed information allows us to separate lawn fertilizers from

other lawn product such as flower food, pesticide, herbicide and more. We aggregate weekly

sales revenue, which is unit × price, to monthly store-level sales of total lawn fertilizer. We

include all stores in Florida dataset, and we match stores to each county using county FIPS

code provided in this dataset. The final data used in the following analysis are store-month

7Calculated based on data from The Nielsen Company (US), LLC and marketing databases provided by
the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business.

8The conclusions drawn from the Nielsen data are those of the researchers and do not reflect the views
of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing
the results reported herein.
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Figure 4.1: Ban Counties in Florida

level, and the final sample contains data of 290 different lawn fertilizers from 2,163 stores in

67 counties, spanning from 2006 to 2015 with a total of 92,755 observations. Table 4.2 shows

summary statistics of ban counties in the final sample. It shows that there are much more

stores that sell lawn fertilizers among counties in the south Florida (where ban counties and

non-ban border counties are) than in the central and north Florida.

Table 4.2: Summary statistics of final sample

County Type Number of Counties Number of Stores Number of Observations

Ban County 11 625 26,136

Non-ban Non-adjecent County 35 476 23,322

Non-ban Adjecent County 17 674 28,871

Total 63 1,775 78,329
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We also use labor force data from Bureau of Labor Statistics and Economic data from

Bureau of Economic Analysis to bring in more control variables that describe the economic

and labor force status. These data are county-year level. We add these control variables

(income, unemployment rate, and population) to test the sensitivity of our results to the

recession during our sample period.

4.4 Model

To study how consumers responded to the rainy season ban, we estimate the average

effect of this series of bans on consumer behavior in ban counties. We use a fixed model to

control for time-invariant and space-invariant unobservables, such as store characteristics,

potential different preferences in home use fertilizer in different counties and seasonality in

fertilizer purchases,

The fixed effects model we begin with is:

ln(salesicm) = β0+β1posticm∗ban monthicm+β2posticm∗nonban monthicm+αi+αm+εicm,

(4.1)

where salesicm stands for the aggregated fertilizer sales at store i, county c, year-month m.

β1 and β2 are our coefficient of interest, which represent the aggregate effect of the ban on

months the bans apply, and spill over effect to non-ban months. posticm is a binary indicator

that equals one for store i in county c in and after the June this phosphorus ban was first

implemented in this county, and zero otherwise. ban monthicm (nonban monthicm) is a

binary indicator that equals one (zero) for store i in county c in year-month m that the

phosphorus ban is applied, and equals zero (one) for all months this ban does not apply in

a county. αi and αm are store and year by month fixed effects respectively, and εicm is the

error term.
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To explore potential leakage of sales to months immediately proceeding or following ban

months separately, we estimate a slightly different specification:

ln(salesicm) = γ0 + γ1posticm ∗ springm + γ2posticm ∗ ban monthicm

+ γ3posticm ∗ fallwinterm + ηi + ηm + εicm,
(4.2)

where springm equals one if month equals to March, April, May, and springm equals zero

otherwise. fallwinterm equals one if month equals to October, November, December,

January, February, and fallwinterm equals zero otherwise. γ1 and γ3 are coefficients of

interest. γ1 and γ3 provide more information of potential spillover effect of the ban than β1

and β2 from equation (1).

The following equation is used to plot the average effect of this phosphorus ban by year,

using the year before the ban as reference year:

ln(salesicm) = ρ0 + ΣN
n=2(ρn ∗ Y earc,T−n) + ΣM

m=0(ρm ∗ Y earc,T+m)+ωi + ωm + εicm (4.3)

where Y earc,T−n equals one for county c in n year before the start-year of the ban, and T

stands for the start-year of the ban. Y earc,T−n equals zero for county c in all other years.

Y earc,T+m is the same for county c in years after the start-year. The year right before the

ban Y earc,T−1 is the reference year, so it does not appear in this equation.

We estimate equation (3) to illustrate the differential sales between ban counties and

non-ban, non-border counties. We show that ban counties and non-ban, non-border counties

share non-differential sales pattern before the ban, but sales in ban counties started to fall

in about two years after the ban and stayed at a lower level. Non-differential pre-trend

provides evidence that our identification is valid in that the treatment group and control

group satisfy the parallel trend assumption prior to the ban (after controlling for different

fixed effect). This allows us to attribute the difference in post-ban sales between two groups

to the implementation of this summer ban.
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4.5 Results

Table 4.3 presents regression results from equation (1). It shows that on average, fer-

tilizer purchases drop by around 21.68% in ban counties. About a third of this decrease is

from sales in ban months, and two thirds are from sales in non-ban months. For robustness

check, we also control for income, unemployment rate, population temperature and precip-

itation, and our results are consistent. Column (8) shows there is no significant change in

fertilizer sales in non-ban, border counties compared with control counties. This indicates

no spatial spillover of this ban, which agrees with our assumption. We assume that since

this ban only applies to fertilizer use instead of sale, consumers in ban counties are likely

to (1) reduce fertilizer purchase because there is no need to stock up fertilizer; (2) have no

incentive to buy phosphorus fertilizer in non-ban counties even when local supply is low,

since they cannot apply it as a result of the use ban.

Table 4.4 presents regression results from equation (2). In equation (2), non-ban months

are split into before-ban season and post-ban seasons. Column (4) shows that the bans

are most effective in reducing fertilizer sales during spring, or before-ban season. This is

reasonable as spring is growing season, and most people fertilize lawns relatively often during

spring to keep grass green and healthy. The strong seasonality in sales data confirms this

behavior. Fertilizer sales rise sharply every spring and gradually drop through the rest of a

year. Column (8) shows fertilizer sales in non-ban, border counties experienced statistically

significant changes in different seasons. This is unexpected and against the results from

estimating equation (1), and we do not yet have the explanation of this inconsistent result.

Figure 4.2 and Figure 4.3 present plots of the average effect of this ban in different

time length before and after the implementation of summer ban, using different subsets

of the final sample. We use the last year before the ban as the reference year. Figure 4.2

shows on average, this ban has reduced fertilizer purchases in ban counties by about 17% on

average in the following years after implementation compared with control counties, which

is consistent with the regression results in Table 4.3.
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Notes: This figure presents regression results from equation (3), using ob-
servations in ban counties and non-ban, non-border counties. T-1 is the last
year before the implementation of this ban, and we use this year as reference
year.

Figure 4.2: Average effect in ban counties

4.6 Conclusions and discussion

This paper examines the effectiveness of a series of rainy season bans on phosphorus

lawn fertilizer application in Florida. We use fixed effects model to study the average effect

of the ban. We find evidence that the ban effectively reduced home lawn fertilizer purchases

in ban counties, and our results are robust and consistent. We also find spillover effect of

this ban on fertilizer sales to before-ban season among ban counties. We find weak evidence

that there is no spatial spillover of this ban, that is, we show this ban did not change total

fertilizer sales in non-ban, border counties.

Due to the limitedness of data, we cannot tell the exact phosphorus contents from

fertilizer sales data. Also, we can only observe the purchases of lawn fertilizer, instead of
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Notes: This figure presents regression results from equation (3), using ob-
servations in non-ban, border counties and non-ban, non-border counties.
We use the earliest ban start year in a county’s bordered ban counties as a
“start year” for non-ban, border counties. We also use the last year before
the “start year” as reference year.

Figure 4.3: Average effect in border counties

the actual application time and amount of fertilizer. This means we cannot provide strong

evidence on exactly how much phosphorus is applied to home lawns, and whether there

exist changes in actual application due to the ban. All we can observe is that this ban did

result in a negative and statistically significant change in fertilizer purchasing pattern. For

a ban on use instead of sale, this change in consumer behavior shows the ban is effective

and results in little spatial spillover.
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Table 4.3: Average effect of the ban

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Ban VS. Control Border VS. Control

post×ban month -0.0724 -0.178*** -0.179*** -0.0824* -0.0206 -0.113*** -0.117*** -0.0557
(0.0481) (0.0489) (0.0488) (0.0497) (0.0374) (0.0414) (0.0418) (0.0419)

post×non-ban month 0.0323 -0.0723 -0.0742 -0.162*** 0.0812* -0.00678 -0.00923 -0.0644
(0.0485) (0.0460) (0.0462) (0.0459) (0.0452) (0.0457) (0.0455) (0.0455)

ln(income) 0.321 0.304 0.229 0.155
(0.381) (0.382) (0.333) (0.331)

ln(population) 0.493 0.621 -0.201 -0.103
(0.802) (0.802) (0.543) (0.538)

ln(unemployment rate) -0.463*** -0.224 -0.384*** -0.0694
(0.161) (0.159) (0.144) (0.146)

temperature 0.227*** 0.209***
(0.0154) (0.0159)

temperature
2

-0.00363*** -0.00371***
(0.000421) (0.000429)

precipitation -0.000590*** -0.000950***
(0.000188) (0.000177)

precipitation
2

1.20e-06*** 1.74e-06***
(3.70e-07) (3.63e-07)

Observations 49,436 49,436 49,436 49,436 52,173 52,173 52,173 52,173
R-squared 0.802 0.803 0.803 0.807 0.803 0.803 0.804 0.806
Store FE Yes Yes Yes Yes Yes Yes Yes Yes
Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Ban County×year FE No Yes Yes Yes - - - -
Border County×year - - - - No Yes Yes Yes
Cluster Store Store Store Store Store Store Store Store
Ban Period Both Both Both Both Both Both Both Both

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table shows the regression results from equation (1). Column (1) to (4) are regression results from the subsample of
ban counties and control counties (non-ban, non-border counties). Column (5) to (8) are regression results from the subsample of
non-ban, border counties and control counties. “post” is a binary indicator that equals one for each ban county after the first month
in the first year this phosphorus ban was implemented; otherwise equals zero. For any border county, “post” follows the earliest ban
county of all its bordered ban counties. “Both” in “Ban period” means the subsample contains both counties that enacted summer
phosphorus ban and counties that enacted all year phosphorus ban. Data used in this regression is store-month level. Column (1)
and (5) shows results without ban (border) county by year fixed result. The rest columns show results after adding ban (border)
county by year fixed effect, ie, assuming fertilizer purchases in ban (border) counties and control counties present different trend. We
also add other controls of economics and labor force, and controls of temperature and precipitation. Column (4) and (8) shows that
compared with non-ban, non-border counties, fertilizer purchase in ban counties dropped after the ban, while fertilizer purchase in
non-ban border counties did not change. It also shows in ban counties, fertilizer purchase in non-ban months dropped about twice as
much as in ban months. This table shows fertilizer purchase in ban counties after the implementation of the ban dropped by about
21.7% on average.
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Table 4.4: Average effect of the ban by season, summer ban only

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Ban VS. Control Border VS. Control

post×ban month -0.0938** -0.209*** -0.187*** -0.0221 0.113** 0.00236 0.00746 -0.0821*
(0.0456) (0.0462) (0.0465) (0.0464) (0.0451) (0.0455) (0.0457) (0.0454)

post×spring -0.136*** -0.268*** -0.252*** -0.234*** 0.197*** 0.0977** 0.111** 0.110**
(0.0475) (0.0519) (0.0515) (0.0511) (0.0466) (0.0457) (0.0458) (0.0454)

post×fallwinter 0.212*** 0.0971* 0.111* -0.0559 -0.221*** -0.334*** -0.319*** -0.150***
(0.0653) (0.0586) (0.0583) (0.0586) (0.0478) (0.0535) (0.0532) (0.0553)

ln(income) 0.460 0.437 0.282 0.266
(0.419) (0.417) (0.363) (0.363)

ln(population) -0.137 -0.134 0.188 0.211
(0.855) (0.852) (0.728) (0.726)

ln(unemployment rate) -0.551*** -0.389** -0.457*** -0.170
(0.158) (0.157) (0.150) (0.152)

temperature 0.199*** 0.184***
(0.0173) (0.0177)

temperature
2

-0.00298*** -0.00313***
(0.000480) (0.000472)

precipitation -0.000795*** -0.00102***
(0.000198) (0.000191)

precipitation
2

1.55e-06*** 1.73e-06***
(3.81e-07) (3.81e-07)

Observations 42,091 42,091 42,091 42,091 43,207 43,207 43,207 43,207
R-squared 0.803 0.804 0.804 0.807 0.802 0.803 0.803 0.805
Store FE Yes Yes Yes Yes Yes Yes Yes Yes
Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Ban County×year FE No Yes Yes Yes - - - -
Border County×year - - - - No Yes Yes Yes
Cluster Store Store Store Store Store Store Store Store
Ban Period Summer Summer Summer Summer Summer Summer Summer Summer

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table shows results from equation (2) using two different subsamples of our data. “spring” equals one for March, April
and May, and “fallwinter” equals one for October, November, December, January and February. This table shows the ban effectively
decreased fertilizer purchase in the months preceding ban months in ban counties.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 1

(a) (b)

(c)
Notes: This figure shows distributions of nutrient concentrations with no
replacement for “below quantification limit” values.

Figure A.1: Distribution of log of nutrient concentrations (no replacement)
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Table A.1: Regression results from fixed effect model

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ammonia Ammonia Inorganic Inorganic Kjeldahl Kjeldahl

Dep. and ammonium and ammonium nitrogen nitrogen nitrogen nitrogen Nitrate Nitrate Nitrite
VARIABLES Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved

CRP ratio 0.152 -3.431 0.324 7.382 1.459 -3.264* 1.213 -8.950* -0.932*
(0.982) (5.299) (1.293) (8.118) (1.505) (1.745) (1.902) (5.084) (0.518)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County

Obs. 86,349 12,814 106,412 14,903 35,876 11,780 82,613 10,416 80,023
R-squared 0.363 0.608 0.392 0.497 0.406 0.465 0.378 0.518 0.410

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Nitrogen Nitrogen Organic Organic Phosphate-

Dep. Nitrite mixed forms mixed forms nitrogen nitrogen Phosphate Phosphate Phosphorus Phosphorus phosphorus
VARIABLES Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Total

CRP ratio -3.724 -0.717 1.008 0.619 -5.498** -1.333 -30.99** 0.00163 5.524*** -31.03***
(4.097) (1.277) (2.375) (0.826) (2.192) (1.100) (13.44) (1.706) (2.136) (6.658)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County County

Obs. 8,527 44,851 10,086 41,202 11,620 81,614 5,078 34,893 17,658 5,848
R-squared 0.557 0.325 0.380 0.370 0.471 0.381 0.541 0.465 0.499 0.548

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table contains regression results from estimating equation (1). Independent variable “CRP ratio” stands for five-year moving
average of CRP acreage

(CRP+cropland) acreage
.



www.manaraa.com

67

Table A.2: Regression results after adding more land use variable

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ammonia Ammonia Inorganic Inorganic Kjeldahl Kjeldahl

Dep. and ammonium and ammonium nitrogen nitrogen nitrogen nitrogen Nitrate Nitrate Nitrite
VARIABLES Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved

RCRP 2.340 1.866 1.850 -4.064 6.993*** -10.12 2.869 -42.43 -2.410
(2.320) (16.81) (2.928) (23.15) (2.276) (8.046) (6.176) (39.64) (1.763)

Rnoncrop -2.190 -29.40* 6.936 -29.09** -7.543*** 3.316 6.913 0.144 1.679
(2.029) (16.64) (4.536) (14.40) (2.328) (8.870) (5.432) (8.192) (1.961)

Rrangeland 5.142 -8.616 1.075 -18.78* 13.12*** 2.119 1.714 -10.37 0.280
(3.304) (12.01) (3.115) (10.46) (4.092) (11.02) (3.595) (7.663) (2.746)

Rpastureland -1.308 -0.367 5.603* -12.48 -6.047* -7.464 1.172 10.96 -2.010
(2.535) (9.829) (3.339) (11.61) (3.308) (4.601) (3.466) (12.68) (2.371)

Rurban -0.246 -1.183 0.633 -5.662 -5.515*** -5.453 -0.152 4.932 2.972**
(1.931) (6.129) (1.972) (7.662) (1.949) (4.721) (2.229) (8.424) (1.421)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County

Ob. 87,965 12,995 108,064 14,950 36,347 11,830 84,312 10,593 81,749
R-squared 0.361 0.607 0.396 0.499 0.412 0.468 0.380 0.521 0.424

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Nitrogen Nitrogen Organic Organic Phosphate-

Dep. Nitrite mixed forms mixed forms nitrogen nitrogen Phosphate Phosphate Phosphorus Phosphorus phosphorus
VARIABLES Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Total

RCRP -11.56 -1.049 7.592 1.819 -16.74*** -2.244 -94.24 0.791 28.26*** -44.95***
(10.91) (2.308) (7.710) (2.022) (6.275) (2.654) (67.28) (4.380) (7.440) (13.80)

Rnoncrop -57.16** -2.160 3.257 -1.561 -0.0933 -2.476 -17.23 -15.04*** 11.51* 7.594
(25.33) (2.487) (7.959) (1.982) (4.923) (2.507) (16.04) (4.568) (6.563) (13.95)

Rrangeland 12.82* 2.194 19.24*** 13.18*** 11.86* 4.863** 34.64* 5.068 26.73*** 33.34**
(7.491) (2.693) (7.224) (2.865) (6.874) (2.134) (20.15) (5.865) (7.178) (15.43)

Rpastureland -19.54* 4.291* -0.705 1.914 -1.979 2.175 6.457 -4.015 11.88* 4.786
(11.62) (2.359) (2.746) (2.065) (4.161) (2.383) (11.93) (4.495) (6.056) (7.587)

Rurban -16.11* -2.101 4.624 -4.507*** -4.567 2.073 10.22 -0.0168 10.26** 9.486
(9.289) (2.056) (3.769) (1.661) (3.437) (1.432) (12.59) (3.091) (4.605) (10.88)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County County

Obs. 8,704 45,680 10,159 41,996 11,827 83,160 5,241 35,447 17,761 6,011
R-squared 0.569 0.330 0.384 0.375 0.475 0.382 0.538 0.474 0.502 0.543
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Independent variable R(l) is the moving average of acreage in land use l
Total land acreage

in the past five years.
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Table A.3: Regression results, corn belt

DEPENDENT Kjeldahl nitrogen Nitrate Phosphate Phosphate-phosphorus
VARIABLES Total Total Total Total

(1) (2) (3) (4) (5) (6) (7) (8)

CRP ratio -0.394 38.65* 216.9 -27.79***
(1.522) (22.58) (302.8) (6.416)

RCRP -7.682 133.4* -4,878 -34.94***
(8.958) (65.76) (3,121) (9.389)

Rnoncrop 18.94 99.12*** 194.9*** 13.93
(22.66) (26.86) (63.60) (15.53)

Rrangeland 56.55 312.3 - -
(41.27) (477.8) - -

Rpastureland -36.37 -92.14*** 82.98 -0.983
(23.77) (22.18) (120.4) (7.872)

Rurban -2.933 155.7*** 282.6*** 18.24
(16.26) (33.58) (53.56) (23.09)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County

Obs. 1,262 1,262 527 527 320 320 1,019 1,019
R-squared 0.502 0.504 0.392 0.395 0.793 0.801 0.565 0.565

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This regression use observations from Illinois, Indiana, Iowa, Nebraska, Minnesota, North Dakota, South Dakota,
Michigan, Wisconsin, Ohio, Kentucky. Compared with Table 2 and Table 4, one can see that as I restrict the sample to Corn
Belt counties, sample size drops dramatically and data gets much noisier.
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Table A.4: Regression results by region

DEP. Kjeldahl nitrogen Nitrate Kjeldahl nitrogen Nitrate Kjeldahl nitrogen Nitrate

VAR. Total Total Total Total Total Total

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CRP ratio -2.350*** 0.317 -3.243*** -0.186 17.77** -19.14

(0.821) (4.629) (0.343) (5.985) (8.645) (17.21)

RCRP -15.04*** -89.06* -16.03*** 5.625 45.29 -57.78

(5.258) (48.43) (3.275) (10.35) (29.45) (56.05)

Rnoncrop -6.836 -107.6*** -3.867 -71.51 -5.819 9.128

(10.31) (38.77) (4.387) (54.36) (7.885) (66.54)

Rrangeland -1.239 -40.18*** -7.174* -11.52 42.05 -239.8

(7.192) (13.29) (3.905) (56.32) (67.90) (239.2)

Rpastureland 9.661 -13.24 6.057 1.516 14.88** 20.42

(6.006) (12.71) (5.686) (32.93) (5.867) (26.06)

Rurban -10.62*** 32.43** -2.637 -29.78 9.835** 67.73

(2.941) (15.33) (6.088) (37.71) (4.361) (65.28)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Cluster County County County County County County County County County County County County

Obs. 2,650 2,652 2,112 2,112 2,349 2,351 1,975 1,975 1,966 1,974 975 981

R2 0.568 0.573 0.398 0.402 0.400 0.402 0.419 0.420 0.258 0.265 0.408 0.411

Region West West West West South South South South MS River MS River MS River MS River

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: West means observations from Arizona, California, Colorado, Idaho, Kansas, Oklahoma, Texas, Oregon, Utah, Washington and Wyoming. South stands for Kansas,
Texas, Colorado and New Mexico. MS River means states along Mississippi River: Minnesota, Iowa, Wiconsin, Illinois, Missouri, Arkansas, Tennessee, Mississippi, Louisiana and
Kentucky. The regression results are noisy but consistent with previous results using national dataset. I only include Kjeldahl nitrogen and nitrate because other categories appear
to be too noisy.
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Table A.5: Regression results using original CRP data with no interpolation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ammonia Ammonia Inorganic Inorganic Kjeldahl Kjeldahl

DEP. and ammonium and ammonium nitrogen nitrogen nitrogen nitrogen Nitrate Nitrate Nitrite
VAR. Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved

CRP ratio 1.106 -1.517 -1.934 -19.08 7.604*** -4.557*** -1.139 -5.678 -0.280
(1.395) (8.114) (1.280) (12.06) (2.778) (1.719) (1.315) (5.832) (0.617)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County

Obs. 47,900 4,878 54,684 6,067 15,111 4,661 45,948 3,953 44,588
R-squared 0.386 0.704 0.399 0.590 0.486 0.583 0.387 0.468 0.453
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Nitrogen Nitrogen Organic Organic Phosphate-

DEP. Nitrite mixed forms mixed forms nitrogen nitrogen Phosphate Phosphate Phosphorus Phosphorus phosphorus
VAR. Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Total

CRP ratio -0.115 0.662 -1.422 2.913*** -7.761** -1.750* -22.25** 6.911*** 8.817** -22.46***
(1.926) (1.271) (2.766) (1.088) (3.053) (0.979) (9.082) (2.276) (4.322) (6.666)

Cluster County County County County County County County County County County
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County County

Obs. 2,978 24,176 4,390 21,578 4,614 45,149 1,825 17,213 8,051 2,530
R-squared 0.778 0.358 0.379 0.376 0.559 0.418 0.665 0.531 0.531 0.622
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table shows regression results using original land use data without linear interpolation.
It shows the results are consistent with using the main dataset in this paper but noisy.
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Table A.6: Regression results using censored data

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ammonia Ammonia Inorganic Inorganic Kjeldahl Kjeldahl

DEP. and ammonium and ammonium nitrogen nitrogen nitrogen nitrogen Nitrate Nitrate Nitrite
VAR. Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved

CRP ratio 0.439 -2.157 0.436 4.523 2.572 -1.712 1.185 -9.059*** -2.020**
(1.430) (3.423) (0.824) (8.681) (2.324) (1.516) (1.010) (3.469) (0.971)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County

Obs. 46,468 8,577 80,923 10,302 20,375 8,420 63,028 6,682 16,080
R-squared 0.372 0.587 0.329 0.425 0.403 0.421 0.314 0.488 0.428
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Nitrogen Nitrogen Organic Organic Phosphate-

DEP. Nitrite mixed forms mixed forms nitrogen nitrogen Phosphate Phosphate Phosphorus Phosphorus phosphorus
VAR. Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Total

CRP ratio 16.29* 2.408* -2.819 2.242 -2.579 -2.754* -26.18* -2.988 1.053 -18.93**
(8.383) (1.276) (2.003) (1.561) (1.591) (1.425) (13.66) (2.524) (1.883) (7.370)

Cluster County County County County County County County County County County
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Rock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cluster County County County County County County County County County County

Ob. 2,371 22,758 4,189 14,035 6,543 56,887 2,511 23,557 12,629 3,187
R-squared 0.489 0.370 0.502 0.349 0.415 0.352 0.366 0.415 0.478 0.436
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table shows regression results using original censored water quality data, meaning
there is no replacement for “below quantification limit” records (these type of records consists
of around 40% of water quality data). It shows the results are consistent with using the main
dataset in this paper.
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 2

Table B.1: Regression results, small panel, equation (2)

(1) (2) (3) (4) (5) (6)

Small panel: Log Estimated Population Supplied

ns×drought 5 0.312* 0.422* -0.0387 0.247 0.393 -0.00522

(0.183) (0.249) (0.0998) (0.193) (0.257) (0.128)

ns -0.376 -0.552 0.0729* -0.402* -0.552* -0.0951

(0.269) (0.383) (0.0392) (0.233) (0.330) (0.135)

drought 5 -0.0447 -0.0967 0.0847 -0.0577 -0.104 0.0700

(0.0671) (0.0899) (0.0970) (0.0719) (0.0968) (0.102)

Observations 2,732 1,912 820 2,733 1,913 820

R-squared 0.859 0.830 0.951 0.751 0.728 0.916

Community FE Yes Yes Yes No No No

County FE No No No Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Aquifer All Major Minor All Major Minor

(1) (2) (3) (4) (5) (6)

Large panel: Log Estimated Population Supplied

ns×drought 5 0.178*** 0.235*** 0.0565* 0.0210 0.170** -0.175**

(0.0229) (0.0324) (0.0296) (0.0516) (0.0702) (0.0698)

ns -0.200*** -0.211*** -0.157*** -1.125*** -1.160*** -1.131***

(0.0269) (0.0366) (0.0336) (0.0353) (0.0451) (0.0580)

drought 5 0.0270 0.0197 0.0428 -0.0126 -0.0931 0.126**

(0.0211) (0.0296) (0.0295) (0.0431) (0.0603) (0.0581)

Observations 36,094 23,860 12,234 39,408 25,650 13,678

R-squared 0.970 0.966 0.977 0.566 0.594 0.593

Community FE Yes Yes Yes No No No

County FE No No No Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Aquifer All Major Minor All Major Minor

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table represents regression results from estimating equation (2) using data in the large panel.
Term ns × drought 5 is the coefficient of interest, and it represents the effect of “no surface water” on
population during drought.
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